The Christmas break is coming soon. But no worries to get bored because here are a few things to read already:
- Fu, M. et al. High-Q titanium dioxide micro-ring resonators for integrated nonlinear photonics. Opt. Express, OE 28, 39084–39092 (2020).
- Ji, X. et al. Exploiting Ultralow Loss Multimode Waveguides for Broadband Frequency Combs. Laser & Photonics Reviews 2000353 (2020) doi:10.1002/lpor.202000353. (Arxiv version also this week)
- Kiani, K. M. et al. Four-wave mixing in high-Q tellurium-oxide-coated silicon nitride microring resonators. OSA Continuum, OSAC 3, 3497–3507 (2020).
- Wu, C., Fang, Z., Fan, J., Chen, G. & Cheng, Y. Dissipative Kerr solitons in optical microresonators with the Raman effect and third-order dispersion. Chinese Phys. B (2020) doi:10.1088/1674-1056/abd15f.
- Zhang, S., Silver, J. M., Bi, T. & Del’Haye, P. Spectral extension and synchronization of microcombs in a single microresonator. Nature Communications 11, 6384 (2020).
And below three more papers featuring frequency modulated combs, avoided crossings and microresonators.
- Burghoff, D. Unraveling the origin of frequency modulated combs using active cavity mean-field theory. Optica, OPTICA 7, 1781–1787 (2020).
- Saha, M., Roy, S. & Varshney, S. K. Intra-cavity field dynamics near avoided mode crossing in concentric silicon nitride ring resonator. arXiv:2012.06991 [physics] (2020).
- Surya, J. B., Lu, J., Xu, Y. & Tang, H. X. Stable tuning of photorefractive micro-cavities using an auxiliary laser. arXiv:2012.05293 [physics] (2020).
This work is licensed under a Creative Commons Attribution 4.0 International License.